Efficient Formulas and Computational Efficiency for Glove Games

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinking games and local formulas

Gaifman’s normal form theorem showed that every first order sentence of quantifier rank n is equivalent to a Boolean combination of “scattered local sentences”, where the local neighborhoods have radius at most 7n−1. This bound was improved by Lifsches and Shelah to 3 · 4n−1. We use Ehrenfeucht-Fräıssé type games with a “shrinking horizon” to get a spectrum of normal form theorems of the Gaifma...

متن کامل

An Improvement for Efficiency Interval: Efficient and Inefficient Frontiers

The performances of decision-making units (DMUs) can be evaluated from two different points of view optimistic and pessimistic and accordingly, two different efficiencies can be calculated for each DMU: the best relative efficiency and the worst relative efficiency. In the conventional methods of data envelopment analysis (DEA), only the best relative efficiency is evaluated. It is argued h...

متن کامل

Type Monotonic Allocation Schemes for Multi - Glove Games

Multi–glove markets and corresponding games are considered. For this class of games we introduce the notion of type monotonic allocation scheme. Allocation rules for multi–glove markets based on weight systems are introduced and characterized. These allocation rules generate type monotonic allocation schemes for multi–glove games and are also helpful in proving that each core element of the cor...

متن کامل

The core and the bargaining set in glove-market games

In a glove-market game, the worth of a coalition is defined as the minimum, over all commodities in the market, of the total quantity that the coalition owns of each commodity. We identify a subclass of these games for which the core and the bargaining set coincide with the set of competitive equilibrium outcomes. We present examples showing that these solution concepts differ outside that subc...

متن کامل

Some Computational Formulas for D-Nِrlund Numbers

and Applied Analysis 3 It follows from 1.11 or 1.12 that t n, k t n − 2, k − 2 − 1 4 n − 2 t n − 2, k , 1.13 and that t n, 0 δn,0 n ∈ N0 : N ∪ {0} , t n, n 1 n ∈ N , t n, k 0 n k odd , t n, k 0 k > n or k < 0 , 1.14 where δm,n denotes the Kronecker symbol. By 1.13 , we have t 2n 1, 1 −1 n 2n ! 42n ( 2n n ) , t 2n 2, 2 −1 n n! 2 n ∈ N0 , 1.15 t 2n 2, 4 −1 n 1 n! 2 ( 1 1 22 1 32 · · · 1 n2 ) n ∈ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2013

ISSN: 1556-5068

DOI: 10.2139/ssrn.2383806